Abstract

Magnetic microrobots, designed to navigate the complex environments of the human body, show promise for minimally invasive diagnosis and treatment. However, their clinical adoption faces hurdles such as biocompatibility, precise control, and intelligent tracking. Here a novel formulation (referred to water-stable magnetic lipiodol micro-droplets, MLMD), integrating clinically approved lipiodol, gelatin, and superparamagnetic iron oxide nanoparticles (SPION) with a fundamental understanding of the structure-property relationships is presented. This formulation demonstrates multiple improved properties including flowability, shape adaptability, efficient drug loading, and compatibility with digital subtraction angiography (DSA) imaging in both in vitro and in vivo experiments. This enables the MLMD as a versatile tool for image-guided therapy, supported by a close-looped magnetic navigation system featuring artificial intelligence (AI)-driven visual feedback for autonomous control. The system effectively performs navigational tasks, including pinpointing specific locations of MLMD, recognizing and avoiding obstacles, mapping and following predetermined paths, and utilizing magnetic fields for precise motion planning to achieve visual drug delivery. The MLMD combines magnetic actuation with an AI-directed close-looped navigation, offering a transformative platform for targeted therapeutic delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.