Abstract

The behaviour of photoanodes based on TiO2 nanotubes (TNTs) grown on Ti gauze (80 mesh) by controlled anodic oxidation was studied in a compact photo-electrocatalytic (PECa) device for H2 production by water photo-electrolysis. The 3D-type structured TNTs-Ti meshes evidenced: i) a mesoporosity due to the presence of highly ordered TiO2 nanotube arrays grown on the round surface of the regularly woven wires of the Ti gauze and ii) a macroporosity due to the open area (36%) of the mesh. The resulting hierarchical porous 3D structure allowed the TNTs-Ti meshes to act both as photoactive materials for efficient light absorption and as porous substrates for fast mass diffusion of protons. The synthesis of TNTs was investigated by varying the applied voltage (in the range 40–60V) and the anodization time (from 20min to 7h). Results showed that two main opposite aspects influenced their performances in the PECa cell: i) the inner diameter and ii) the length of TNTs. While the increase of the inner diameter with the anodization time should favour H2 productivity, longer nanotubes negatively influence the catalytic activity due to increasing charge recombination phenomena. The result is an initial decreasing profile of H2 evolution vs. anodization time, reaching a minimum at 3h and then increasing again for the 5h-anodized sample (H2 production rate: 1.4Lm−2h−1). The maximum photoconversion efficiency (0.7%) was obtained, instead, for the 20min-anodized sample. It is to remark that tests of water splitting were performed with no applied bias and without adding sacrificial donors, opening the route for a sustainable use of these 3D-type meso/macro porous structured photoanodes in the production of solar fuels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.