Abstract

Graphene oxide (GO) is a very effective catalyst for splitting water into H+ and OH− ions in bipolar membranes. This research investigated the catalytic activity of six oxygenated functional groups in GO for water splitting. Møller-Plesset second order perturbation method (MP2) simulations were performed to calculate activation barriers for proton acceptance and release reactions with and without an applied electric field. The relative catalytic activity for the functional groups on GO was independent of the electric field intensity and dielectric constant. The catalytic activity for accepting and releasing a proton linearly correlated with the pKa of the functional groups. The edge carboxylate site had the highest catalytic activity for water splitting, and had activation barriers that were 0.2 to 0.4 kcal/mol higher than a model tertiary amine. This suggests that the high catalytic activity of GO results from a high catalytic site density, as opposed to a chemical effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.