Abstract

Water sorption thermodynamics has been effectively investigated in rubbery and glassy polymers using, respectively, an equilibrium lattice fluid model, originally introduced by Panayiotou et al. [Panayiotou, C.; Tsivintzelis, I.; Economou, I.G. Ind. Eng. Chem. Res.2007, 46, 2628], accounting for hydrogen bond (HB) interactions in the system (i.e., the nonrandom hydrogen bonding, NRHB, model), and an extension of this model to a nonequilibrium glassy state (i.e., nonequilibrium thermodynamics for glassy polymers (NETGP)) that follows the same line of thought adopted originally by Doghieri and Sarti [Doghieri, F.; Sarti, G.C. Macromolecules1996, 29, 7885] to develop the NETGP approach. NRHB and NETGP-NRHB models have been used to interpret water sorption thermodynamics respectively in polycaprolactone and in polyimides. Model predictions in terms of self- and cross-HB established in the system are compared with quantitative information gathered from in situ infrared spectroscopy experiments, exploiting the wealth of information provided by proper elaboration of spectroscopy data by means of 2D correlation techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.