Abstract

Water sorption and transport properties for a series of miscible blends of hydrophobic bisphenol A polysulfone and hydrophilic poly(vinyl pyrrolidone) are reported. Study was restricted to blends that remained homogeneous after exposure to liquid water. The solubility of water in the blend films increased with increasing hydrophilic polymer content. Equilibrium sorption isotherms show dual-mode behavior at low activities and swelling behavior at high activities. The sorption kinetics are generally Fickian for blends containing 20% poly(vinyl pyrrolidone) or less, but exhibit two-stage behavior in blends containing 40% poly(vinyl pyrrolidone). Diffusion coefficients extrapolated to zero concentration decrease with increasing poly(vinyl pyrrolidone) content, owing to a decrease in the fractional free volume. However, the diffusion coefficient becomes a greater function of activity as the composition of hydrophilic polymer in the blend is increased, due to plasticization of the material by large levels of sorbed water. Permeability coefficients generally decrease with increasing poly(vinyl pyrrolidone) content for blends containing 20% poly(vinyl pyrrolidone) or less because the decrease in the diffusion coefficient is greater than the increase in the solubility coefficient. Blends containing 40% poly(vinyl pyrrolidone) have permeability coefficients greater than those of polysulfone due to high water solubility. The permeability coefficients depend on water concentration in approximately the same way for all blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 655–674, 1997

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call