Abstract

The aim of this study was to evaluate the effect of low-thickness ceramic laminate translucency on water sorption and solubility in resin luting agents. Ceramic slides (15×0.7 mm) were generated using lithium disilicate (IPS e.max Press, Ivoclar-Vivadent, Schaan, Liechtenstein) that were A1 in color and had decreasing degrees of translucency (high, medium, and low). A slide of transparent glass of similar size was used as the control. Under each slide, 15 specimens (8×0.5 mm) of differing composite materials from the same manufacturer (3M ESPE Dental Products, St Paul, MN, USA) were prepared (n=5): light-cured resin cement (RelyX Veneer); dual-cured resin cement (RelyX ARC); and flowable composite (Z350XT Flow). To evaluate the loss or gain of mass, the specimens were dried until a constant mass was reached. Then, they were immersed in water for seven days and weighed immediately following removal from water. Subsequently, the specimens were dried again until a constant mass was obtained. The mass measurements were used to calculate the water sorption and solubility. Statistical analyses were carried out using a two-way analysis of variance and the Tukey test. Under the high-translucency ceramic slides, all of the luting agents showed similar performance regarding water sorption; the flowable composite resin and the light-cured resin cement had the lowest solubility values. Under the medium- and low-translucency surfaces, the dual-cured resin cement and the flowable composite resin showed better performance with respect to water sorption and solubility. In the case of high-translucency laminates, luting agents with different activation methods might be used. However, even in thin sections, decreasing the translucency of the laminate led to significant loss of light penetration, indicating a decreased likelihood of the physical activation of the resin cement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.