Abstract

With the intention to abate the pollution arising from the improper handling of petroleum-based plastic, green composites consisting of biodegradable plastics and biomass wastes have received widespread attention. However, the balance between mechanical performance and biodegradability still has not been reconciled and evaluated. Herein, a concept for water-soluble poly(vinyl alcohol) (PVA)/biomass waste composite materials is proposed. Instead of degrading to small molecules, the PVA matrix can dissolve in water within the soil. Moreover, after PVA was composited with waste cottonseed shell (CTS) using solid-state shearing milling (S3M) technology, considerable mechanical and thermal performance was achieved, with the maximum tensile strength and degradation temperature of the PVA/CTS composites reaching 10.3 MPa and ∼250 °C, respectively. Moreover, the soil burial test demonstrated that even if PVA cannot degraded in environment within a short term, its water-soluble nature ensures its environmental friendliness, as the PVA matrix can dissolve in soil in 10 days without imposing any adverse effects on either plants (wheat) or animals (earthworm). This work not only describes the preparation a series of ecofriendly PVA/biomass composites but also provides new insight into the environmental friendliness of PVA-based materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call