Abstract

Luminescent silicon nanocrystals are promising nanomaterials for biomedical applications due to their unique optical properties and biocompatibility. Here, we demonstrate a two-step surface modification approach coupling gas-phase and liquid-phase methods to synthesize PEGylated acrylic acid grafted silicon nanocrystals with near-infrared emission in water and biological media. First, acrylic acid grafted silicon nanocrystals are synthesized by an all-gas-phase approach on a millisecond time scale, omitting high temperature and postpurification processes. Subsequently, room-temperature PEGylation is carried out with these acrylic acid grafted silicon nanocrystals, yielding stable colloidal dispersions in both water and high ionic strength Tyrode's buffer with 20-30 nm hydrodynamic diameters. The PEGylated silicon nanocrystals exhibit photoluminescence in the 650-900 nm near-IR window with quantum yields of ∼30% and ∼13% in deionized water and Tyrode's buffer, respectively, after a 7-day oxidation in water. The surface-functionalized Si NCs exhibit relatively small toxicity to MDA-MB-231 cells at concentrations relevant to bioimaging applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call