Abstract

BackgroundNon-photosynthetic chlorophyll (Chl) proteins called water-soluble Chl-binding proteins are distributed in Brassicaceae plants. Brassica oleracea WSCP (BoWSCP) and Lepidium virginicum WSCP (LvWSCP) are highly expressed in leaves and stems, while Arabidopsis thaliana WSCP (AtWSCP) and Raphanus sativus WSCP (RshWSCP) are highly transcribed in floral organs. BoWSCP and LvWSCP exist in the endoplasmic reticulum (ER) body. However, the subcellular localization of AtWSCP and RshWSCP is still unclear. To determine the subcellular localization of these WSCPs, we constructed transgenic plants expressing Venus-fused AtWSCP or RshWSCP.ResultsOpen reading frames corresponding to full-length AtWSCP and RshWSCP were cloned and ligated between the cauliflower mosaic virus 35S promoter and Venus, a gene encoding a yellow fluorescent protein. We introduced the constructs into A. thaliana by the floral dip method. We succeeded in constructing a number of transformants expressing Venus-fused chimeric AtWSCP (AtWSCP::Venus) or RshWSCP (RshWSCP::Venus). We detected fluorescence derived from the chimeric proteins using a fluorescence microscope system. In cotyledons, fluorescence derived from AtWSCP::Venus and RshWSCP::Venus was detected in spindle structures. The spindle structures altered their shape to a globular form under blue light excitation. In true leaves, the number of spindle structures was drastically reduced. These observations indicate that the spindle structure was the ER body.ConclusionsAtWSCP and RshWSCP have the potential for ER body targeting like BoWSCP and LvWSCP.

Highlights

  • Non-photosynthetic chlorophyll (Chl) proteins called water-soluble Chl-binding proteins are distributed in Brassicaceae plants

  • Most chlorophyll proteins playing a role in photosynthesis are membranous proteins, but highly hydrophilic Chl proteins called water-soluble Chl-binding proteins (WSCPs) have been isolated from various land plants of Chenopodiaceae, Amaranthaceae, Polygonaceae, and Brassicaceae [1]

  • Construction of transgenic A. thaliana The full-length regions of Arabidopsis thaliana WSCP (AtWSCP) and RshWSCP were amplified by PCR with specific primer pairs containing a restriction enzyme site: for AtWSCP, 5′-GTCGACATGAAGAATCCTTCAGTGATCTCTTTTC-3′ and 5 ′ - C C ATG GAACCCGGGAAG TATA A G T TG C TA G TAGC-3′; for RshWSCP, 5′-GTCGACATGAAGAAACC TTCAGTGACCCCT-3′ and 5′-GGATCCGTAGAAT GGGAACATCCTCAGACC-3′

Read more

Summary

Introduction

Non-photosynthetic chlorophyll (Chl) proteins called water-soluble Chl-binding proteins are distributed in Brassicaceae plants. Brassica oleracea WSCP (BoWSCP) and Lepidium virginicum WSCP (LvWSCP) are highly expressed in leaves and stems, while Arabidopsis thaliana WSCP (AtWSCP) and Raphanus sativus WSCP (RshWSCP) are highly transcribed in floral organs. To determine the subcellular localization of these WSCPs, we constructed transgenic plants expressing Venus-fused AtWSCP or RshWSCP. Most chlorophyll proteins playing a role in photosynthesis are membranous proteins, but highly hydrophilic Chl proteins called water-soluble Chl-binding proteins (WSCPs) have been isolated from various land plants of Chenopodiaceae, Amaranthaceae, Polygonaceae, and Brassicaceae [1]. Brassica oleracea WSCP (BoWSCP) and Lepidium virginicum WSCP (LvWSCP) are located in the endoplasmic reticulum (ER) body [6, 8], which is contributes to the a unique defense system in Brassicaceae [11, 12]. Because the molecular structure of Class II WSCPs is quite simple and the complex is quite stable and easy to handle, Class II WSCPs are used as model proteins for characterizing the Chl– Chl and Chl–protein interactions of Chl proteins [13, 14]

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.