Abstract

AbstractNanoconfinement effects on water dissociation and reactivity remain controversial, despite their importance to understand the aqueous chemistry at interfaces, pores, or aerosols. The pKw in confined environments has been assessed from experiments and simulations in a few specific cases, leading to dissimilar conclusions. Here, with the use of carefully designed ab initio simulations, we demonstrate that the energetics of bulk water dissociation is conserved intact to unexpectedly small length‐scales, down to aggregates of only a dozen molecules or pores of widths below 2 nm. The reason is that most of the free‐energy involved in water autoionization comes from breaking the O−H covalent bond, which has a comparable barrier in the bulk liquid, in a small droplet of nanometer size, or in a nanopore in the absence of strong interfacial interactions. Thus, dissociation free‐energy profiles in nanoscopic aggregates or in 2D slabs of 1 nm width reproduce the behavior corresponding to the bulk liquid, regardless of whether the corresponding nanophase is delimited by a solid or a gas interface. The present work provides a definite and fundamental description of the mechanism and thermodynamics of water dissociation at different scales with broader implications on reactivity and self‐ionization at the air‐liquid interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.