Abstract

Electricity sector is the largest CO2 emitter and water user in China's industrial sectors. The low-carbon transition of China's electricity sector reduces its cooling water consumption. Here we firstly quantify CO2 emission and virtual water embodied in electricity trade with Quasi-Input-Output model. Then, we analyze the impacts of energy substitution, efficiency improvement, and electricity trade on water-saving co-benefits of CO2 reduction with the differences between the baseline scenario and counterfactual scenario. Results show that the low-carbon transition contributes to water-saving in China's electricity sector. Virtual water and embodied CO2 have relatively decoupled from electricity trade since 2012. Water-saving (+10.4% yr-1) outweighed CO2 reduction (+8.4% yr-1) through energy substitution and efficiency improvement in the 'new normal' stage. Our work emphasizes the need to integrate water-saving co-benefits of CO2 reduction into electricity system planning and highlights the challenges to facilitate coordinated development of the electricity-water nexus in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call