Abstract

Extreme meteorological and hydrological phenomena, including high air temperatures and rainstorms, are becoming increasingly dangerous, causing floods and inundations, as well as long periods without precipitation, which lead to droughts. Green roofs may be one of the possible measures providing solutions to these problems. Rainfall, runoff and water quality data from three different intensive green roof models covered with wildflower meadows (WFs) over 20 months have been analysed to establish the extent to which the type of drainage layer affects hydrological performance. The field experiment was conducted at the Warsaw University of Life Sciences Water Centre park from November 2019 to November 2021. The monitoring of the quality and quantity of runoff was carried out on three models of green roofs incorporating wildflower meadows with drainage layers of 2 cm (WF 1) and 4 cm (WF 2) of polypropylene mat, as well as 6 cm of chalcedony (WF 3), in an urbanized area under moderate climate conditions. The model with the 4 cm polypropylene mat drainage layer retained approx. 6 % more rainwater compared to the model with the one made of chalcedony, and 4 % more than the one with the 2 cm polypropylene mat. Phosphates were detected in most of the leachates from all the wildflower-covered green roof models at 0 ÷ 0.459 mg PO4-P/L, 0 ÷ 0.402 mg PO4-P/L, and 0÷0.360 mg PO4-P/L for WF 1, WF 2 and WF 3. This may suggest that the type of drainage layer was not an important source of phosphates in the leachates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call