Abstract

This report summarizes discharge and water quality monitoring data for the Snake River and Jackson Lake reservoir levels in Grand Teton National Park and John D. Rockefeller, Jr. Memorial Parkway for calendar year 2016. Annual and long-term discharge summaries and an evaluation of chemical conditions relative to state and federal water quality standards are presented. These results are considered provisional, and may be subject to change. River Discharge: Hydrographs for the Snake River at Flagg Ranch, WY, and Moose, WY, exhibit a general pattern of high early summer flows and lower baseflows occurring in late summer and fall. During much of 2016, flows at the Flagg Ranch monitoring location were similar to the 25th percentile of daily flows at that site. Peak flows at Flagg Ranch were similar to average peak flow from 1983 to 2015 but occurred eleven days earlier in the year compared to the long-term average. Peak flows and daily flows at the Moose monitoring station were below the long-term average. Peak flows occurred four days later than the long-term average. During summer months, the unnatural hydro-graph at the Moose monitoring location exhibited signs of flow regulation associated with the management of Jackson Lake. Water Quality Monitoring in the Snake River: Water quality in the Snake River exhibited seasonal variability over the sampling period. Specifically, total iron peaked during high flows. In contrast, chloride, sulfate, sodium, magnesium, and calcium levels were at their annual minimum during high flows. Jackson Lake Reservoir: Reservoir storage dynamics in Jackson Lake exhibit a pattern of spring filling associated with early snowmelt runoff reaching maximum storage in mid-summer (on or near July 1). During 2016, filling water levels and reservoir storage began to increase in Jackson Lake nearly two weeks earlier than the long-term average and coincident with increases in runoff-driven flows in the Snake River. Although peak storage in Jackson Lake was larger and occurred earlier than the long-term average, minimum storage levels were similar to the long-term average.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.