Abstract

ObjectivesGraphene oxide (GO) is a nanocarbon material with a high aspect ratio (width:thickness) and abundant anionic functional groups on its surface. In this study, we attached GO to the surface of medical gauze fibers, constructed a complex with a cationic surface active agent (CSAA), and demonstrated that the treated gauze exhibits antibacterial activity even after rinsing with water. MethodsMedical gauze was immersed in GO dispersion (0.001%, 0.01%, and 0.1%), rinsed with water, dried, and subjected to the Raman spectroscopy analysis. Subsequently, the gauze treated with 0.001% GO dispersion was immersed in 0.1% cetylpyridinium chloride (CPC) solution, immediately rinsed with water, and dried. Untreated, GO-only, and CPC-only gauzes were prepared for comparison. Each gauze was placed in a culture well, seeded with Escherichia coli or Actinomyces naeslundii, and turbidity was measured after 24 h of incubation. ResultsThe Raman spectroscopy analysis of the gauze after immersion and rinsing showed a G band peak, indicating that GO remained on the surface of the gauze. The turbidity measurements indicated that GO/CPC-treated gauze (GO-treated and rinsed, followed by CPC-treatment and rinsing) significantly decreased turbidity compared to the other gauzes (P < 0.05), suggesting that the GO/CPC complex remained on the gauze fibers even after water rinsing and showed antibacterial activity. ConclusionsThe GO/CPC complex imparts water-resistant antibacterial properties to gauze and has the potential to be widely used for the antimicrobial treatment of clothes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call