Abstract
One commonly-used argument against fluctuating renewables is their unpredictability. In contrast, thermal power generation and hydropower are regularly presented as reliable and dispatchable. However, droughts and floods can render useless the share of the power generation infrastructure that directly depends on freshwater. In this work, the global power sector is analysed from an energy-water nexus perspective to evaluate its reliability in case of severe water scarcity on a per-power plant basis, proposing a new method for combining it with water stress scores. At a country level, known individual thermal and hydropower plants are paired with regional water stress projections from 2020 to 2030 and their water source as a bottom-up approach to account for the capacities at risk and identify the points where water dependence could render a power system unreliable. The results show that, globally, about 65 % of generating capacities are directly freshwater-dependent. Moreover, the share of capacities placed in the low-resiliency group increases from 9 % of the total installed in 2020 to over 24 % in 2030 in all scenarios. The findings could help guide the development of the global power sector towards a less water-dependent system and accelerate the deployment of low water-demand power generation technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.