Abstract

Fraxinus pennsylvanica Marsh. seedlings that were 150 days old adapted well to flooding of soil with stagnant water for 28 days. Early stomatal closure, followed by reopening as well as hypertrophy of lenticels and formation of adventitious roots on submerged portions of stems appeared to be important adaptations for flood tolerance. Leaf water potential (ψ1) was consistently higher in flooded than in unflooded seedlings, indicating higher leaf turgidity in the former. This was the result of (1) early reduction in transpiration associated with stomatal closure, and (2) subsequently increased absorption of water by the newly-formed adventitious roots as stomata reopened and transpiration increased. Waterlogging of soil was followed by large increases in ethylene content of stems, both below and above the level of submersion. Formation of hypertrophied lenticels and adventitious roots on flooded plants was correlated with increased ethylene production. However, the involvement of various compounds other than ethylene in inducing morphological changes in flooded plants is also emphasized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call