Abstract

A new waste heat and water recovery technology based on a nanoporous ceramic membrane water vapor separation mechanism was developed, to extract the water vapor and its latent heat from low temperature high moisture content waste gas streams. For the water reclamation process, water vapor condenses inside the membrane pores and passes through to the permeate side which is in direct contact with a low-temperature water stream. Contaminants such as CO2, O2, NOx, and SO2 are inhibited from passing through the membrane by its high selectivity. The recovered water is of high quality and mineral free, therefore can be used as supplemental makeup water for almost all industrial processes. The membrane based technology has been first developed and demonstrated for industrial boiler flue gas heat and water recovery. Now it is being developed for wider applications, from residential humidification, commercial laundry, biomass production to utility boilers. The increased application areas will greatly enhance waste heat and water recovery potentials worldwide, to save both energy and water, and benefit the global environment. In this paper, the technology development process, and several demonstrations for different applications are discussed in details.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.