Abstract

The radiolysis of water confined in montmorillonites is studied as a function of the composition of the montmorillonite, the nature of the exchangeable cation, and the relative humidity by following the H2 production under electron irradiation. It is shown that the main factor influencing this H2 production is the water amount in the interlayer space. The effect of the exchangeable cation is linked to its hydration enthalpy. When the water amount is high enough to get a basal distance higher than 1.3 nm, then a total energy transfer from the montmorillonite sheets to the interlayer space occurs, and the H2 production measured is very similar to the one obtained in bulk water. For a basal distance smaller than 1.3 nm, the H2 production increases with the relative humidity and thus with the water amount. Lastly, electron paramagnetic resonance measurements evidence the formation of a new defect induced by ionizing radiation. It consists of a hydrogen radical (H2 precursor) trapped in the structure. This implies that structural hydroxyl bonds can be broken under irradiation, potentially accounting for the observed H2 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.