Abstract
The quality of water is a critical parameter that affects human health, aquatic ecosystems, and environmental sustainability. The prediction of water quality using machine learning techniques has emerged as a promising solution for early detection and management of water pollution. This project focuses on developing a predictive model that leverages historical water quality data to forecast future water quality indices. Various machine learning algorithms, including regression and classification techniques, will be employed to analyze parameters such as pH, turbidity, dissolved oxygen, and contaminant levels. By training the model on a comprehensive dataset, the system aims to provide accurate and timely predictions, enabling proactive measures to be taken to ensure safe water supplies. The implementation of this model can significantly aid regulatory bodies and water management authorities in monitoring and maintaining water quality standards, ultimately contributing to public health and environmental conservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.