Abstract

The study investigates the latent pollution sources and most significant parameters that cause spatial variation and develops the best input for water quality modelling using principal component analysis (PCA) and artificial neural network (ANN). The dataset, 22 water quality parameters were obtained from Department of Environment Malaysia (DOE). The PCA generated six significant principal component scores (PCs) which explained 65.40 % of the total variance. Parameters for water quality variation are mainlyrelated to mineral components, anthropogenic activities, and natural processes. However, in ANN three input combination models (ANN A, B, and C) were developed to identify the best model that can predict water quality index (WQI) with very high precision. ANN A model appears to have the best prediction capacity with a coefficient of determination (R2) = 0.9999 and root mean square error (RMSE) = 0.0537. These results proved that the PCA and ANN methods can be applied as tools for decision-making and problem-solving for better managing of river quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.