Abstract

Water quality modeling with dynamic parameters, especially of rivers, is important in terms of proactive pollution management strategies. Techniques such as artificial neural networks (ANNs) have become popular for such applications. In the present study, an ANN is used to construct a multilayer perceptron and radial basis function neural network model to simulate and predict dissolved oxygen in the River Ganga in selected regions of Uttar Pradesh, and to demonstrate its application in identifying complex nonlinear relationships between input and output variables. The results of the model analysis demonstrate that the multi-layer perceptron model provides greater correlation coefficients (R = 0.993) and a lower mean square error (RMSE = 0.1984) than the radial basis function model (R = 0.789; RMSE = 1.0011). The results of the analysis suggest the suitability of the proposed MLP-ANN model to predict water quality parameters such as dissolved oxygen using limiting data sets for the River Ganga, in particular, and other rivers in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.