Abstract
Traditionally, water quality is evaluated using expensive laboratory and statistical procedures, making real-time monitoring ineffective. Poor water quality requires a more practical and cost-effective solution. Water pollution has been a severe issue, hurting water quality in recent years. Therefore, it is crucial to create a model that forecasts water quality to control water pollution and inform consumers in the event of the detection of poor water quality. For effective water quality management, it is essential to accurately estimate the water quality class. Motivated by these considerations, we utilize the benefits of machine learning methods to construct a model capable of predicting the water quality index and water quality class. This study aims to investigate the performance of machine learning models for multiclass classification in the Langat River Basin water quality assessment. Three machine learning models were developed using Artificial Neural Networks (ANN), Decision Trees (DT), and Support Vector Machines (SVM) to classify river water quality. Comparative performance analysis between the three models indicates that the SVM is the best model for predicting river water quality in this study. In addition, there is a statistically significant difference in performance between the SVM, DT, and ANN models at the 0.05 level of confidence. The use of the kernel function, the grid search method, and the multiclass classification technique used in this study significantly impacts the effectiveness of the SVM model. The findings bolster the idea that machine learning models, particularly SVM, can be used to forecast WQI with a high degree of accuracy, hence enhancing water quality management. Consequently, the model based on machine learning lowered the cost and complexity of calculating sub-indices of six water quality parameters and classifying water quality compared to the standard IKA-JAS formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.