Abstract

There is substantial concern that microbial and nutrient pollution by cattle on public lands degrades water quality, threatening human and ecological health. Given the importance of clean water on multiple-use landscapes, additional research is required to document and examine potential water quality issues across common resource use activities. During the 2011 grazing-recreation season, we conducted a cross sectional survey of water quality conditions associated with cattle grazing and/or recreation on 12 public lands grazing allotments in California. Our specific study objectives were to 1) quantify fecal indicator bacteria (FIB; fecal coliform and E. coli), total nitrogen, nitrate, ammonium, total phosphorus, and soluble-reactive phosphorus concentrations in surface waters; 2) compare results to a) water quality regulatory benchmarks, b) recommended maximum nutrient concentrations, and c) estimates of nutrient background concentrations; and 3) examine relationships between water quality, environmental conditions, cattle grazing, and recreation. Nutrient concentrations observed throughout the grazing-recreation season were at least one order of magnitude below levels of ecological concern, and were similar to U.S. Environmental Protection Agency (USEPA) estimates for background water quality conditions in the region. The relative percentage of FIB regulatory benchmark exceedances widely varied under individual regional and national water quality standards. Relative to USEPA’s national E. coli FIB benchmarks–the most contemporary and relevant standards for this study–over 90% of the 743 samples collected were below recommended criteria values. FIB concentrations were significantly greater when stream flow was low or stagnant, water was turbid, and when cattle were actively observed at sampling. Recreation sites had the lowest mean FIB, total nitrogen, and soluble-reactive phosphorus concentrations, and there were no significant differences in FIB and nutrient concentrations between key grazing areas and non-concentrated use areas. Our results suggest cattle grazing, recreation, and provisioning of clean water can be compatible goals across these national forest lands.

Highlights

  • Livestock grazing allotments on public lands managed by the United States Forest Service (USFS) provide critical forage supporting ranching enterprises and local economies [1,2,3]

  • The sum of NO3-N and NH4N concentrations was lower than organic N (TN – [NO3-N+NH4N]) concentrations throughout the sampling season (Fig. 2), suggesting that the majority of nitrogen was in organic forms

  • PO4-P concentrations were much lower than total phosphorus (TP) (Table 1; Fig. 3), suggesting that the majority of phosphorus was either organic or inorganic P adsorbed to suspended sediments

Read more

Summary

Introduction

Livestock grazing allotments on public lands managed by the United States Forest Service (USFS) provide critical forage supporting ranching enterprises and local economies [1,2,3]. Surface waters on public lands are used for human recreation and consumption, and serve as critical aquatic habitat. Concerns have been raised that microbial and nutrient pollution by livestock grazing on public lands degrades water quality, threatening human and ecological health [4,5,6,7]. FIB are regulated in an attempt to safeguard public health from waterborne pathogens such as Cryptosporidium parvum and E. coli O157:H7 and human enteroviruses including adenoviruses and coliphages [8]. Concerns about elevated N and P concentrations in surface water stem from the potential for eutrophication of aquatic systems [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call