Abstract

Photocatalysis has proved its potential in cleaving the Cβ-O linkages between the natural aromatic units in lignin biomass and converting abundant lignin biomass to valuable aromatic monomer products. However, the slow reaction rate and low selectivity for aromatic monomers still hinder its future industrial implementation. To address these challenges in photocatalytic Cβ-O bond fragmentation, a Zn/S rich phase zinc indium sulfide photocatalyst was developed to promote hydrogenolysis of Cβ-O linkages in lignin. In this work, water is for the first time, used as the hydrogen donor and can significantly promote the photocatalytic process by eliminating the limitation of protons supply. The reaction selectivity for aromatic monomers increased by 170% and PP-ol conversion rate raised by 58% comparing to the reaction condition without water. Notably, complete conversion of lignin model compounds with an expectational improved reaction rate and over 90% selectivity for aromatic monomers have been achieved in this study. The isotopic labeling experiments and kinetic isotope effects (KIE) measurements also indicate that the dissociation of the O–H bond in water which provides protons to the Cβ-O bond hydrogenolysis process is a critical step to this reaction. Mechanistic studies reveal that the dehydrogenated radical intermediates are initially generated by the oxidation of photogenerated holes, and the protons generated from photocatalytic water splitting are superior in facilitating the subsequently hydrogenolysis process of Cβ-O bonds. This study provides a new and effective strategy to promote the cleavage of Cβ-O linkages and is helpful for the future development of photocatalytic lignin valorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.