Abstract
AbstractTranspiration measurements of two alpine tundra species, Deschampsia caespitosa and Geum rossii, and two arctic tundra species, Dupontia fischeri and Carex aquatilis, were conducted under varying atmospheric and soil moisture stress regimes to determine if the stomatal response to water stress may play a role in the local distributions of these species. Under low soil moisture stress, stomata of the species restricted typically to wet meadow areas, Deschampsia and Dupontia, did not exhibit closure until leaf water potential declined. However, when soil moisture stress was low and atmospheric stress increased, Geum and particularly Carex exhibited partial stomatal closure before leaf water potential dropped, suggesting a direct response of the stomata to the vapor pressure gradient between the leaf and the atmosphere. Lower liquid phase water transport resistance from the soil to the leaves may also reduce the development of leaf moisture stress in Geum. Furthermore, Geum and possibly Carex appeared to undergo less of a loss of leaf turgor when leaf water potential decreased. This response may serve to maintain leaf cell turgor and to abate the reduction in leaf enlargement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.