Abstract

In this work, a localized plasmon-based sensor is developed for para-cresol (p-cresol) - a water pollutant detection. A nonadiabatic [Formula: see text] of tapered optical fiber (TOF) has been experimentally fabricated and computationally analyzed using beam propagation method. For optimization of sensor's performance, two probes are proposed, where probe 1 is immobilized with gold nanoparticles (AuNPs) and probe 2 is immobilized with the AuNPs along with zinc oxide nanoparticles (ZnO-NPs). The synthesized metal nanomaterials were characterized by ultraviolet-visible spectrophotometer (UV-vis spectrophotometer) and transmission electron microscope (HR-TEM). The nanomaterials coating on the surface of the sensing probe were characterized by a scanning electron microscope (SEM). Thereafter, to increase the specificity of the sensor, the probes are functionalized with tyrosinase enzyme. Different solutions of p-cresol in the concentration range of [Formula: see text] - [Formula: see text] are prepared in an artificial urine solution for sensing purposes. Different analytes such as uric acid, β -cyclodextrin, L-alanine, and glycine are prepared for selectivity measurement. The linearity range, sensitivity, and limit of detection (LOD) of probe 1 are [Formula: see text] - [Formula: see text], 7.2 nm/mM (accuracy 0.977), and [Formula: see text], respectively; and for probe 2 are [Formula: see text] - [Formula: see text], 5.6 nm/mM (accuracy 0.981), and [Formula: see text], respectively. Thus, the overall performance of probe 2 is quite better due to the inclusion of ZnO-NPs that increase the biocompatibility of sensor probe. The proposed sensor structure has potential applications in the food industry and clinical medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call