Abstract

Simultaneous determinations of water and antipyrine permeations in monolayers of Madin-Darby canine kidney (MDCK) cells grown on a permeant support were done to study the relationships between water transport and membrane fluidity in these epithelial cells. The changes in permeation of the lipophilic non-electrolyte antipyrine were used to probe the modifications in membrane fluidity. In controls, the apparent diffusional permeability coefficient for water ( P Dw) was three times higher than the antipyrine's one, P DAp (4.2 · 10 −5 vs. 1.4 · 10 −5 cm s −1). Addition of vasopressin or dibutyryl cyclic AMP to the monolayers induced a biphasic increase in antipyrine permeation with peak values at t = 2min, 3–4-fold that of controls. Variations in water permeation were of similar amplitude and obeyed the same time course, leaving the water to antipyrine permeation ratios unchanged. Compound H7, an inhibitor of protein kinases, blunted the increase in permeation for both antipyrine and water. Finally, addition of the fluidizing agent benzyl alcohol to the monolayers resulted in a parallel increase in P DAp and P Dw. These results suggest that the physical state of membrane lipids may control water permeation in MDCK cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.