Abstract
1. The osmotic water permeability Lp and the relations between the flows of H2O, K+ and Cl- were studied in the ventricular membrane of the epithelium from the choroid plexus of Necturus maculosus. 2. The flows were induced by abrupt changes in external osmolarity of the ventricular solution. Solution changes were convective and no effects of unstirred layers could be detected on measured parameters. 3. The initial rate of change in intracellular concentrations of K+ and Cl- was monitored by double-barrelled ion-selective microelectrodes. 4. The initial rate of flux of H2O could be monitored as the changes in the concentration of intracellular choline ions (Ch+i). When 0.5 mmol l-1 of choline chloride was added to the external solutions, Ch+i attained values of 1-5 mmol l-1. The dilution or concentration of Ch+i could be recorded by K+ electrodes since the sensitivity of these to Ch+ is more than 50 times greater than to K+. 5. The Lp of the ventricular membrane of the epithelium was 1.4-2.1 x 10(-4) cm s-1 (osmol l-1)-1 and independent of the direction of the induced water flux. Lp was unchanged in tissues adapted to osmolarities of half the physiological value. 6. The efflux of H2O induced by mannitol was associated with an instantaneous efflux of K+ which was inhibited by furosemide. The fluxes had a ratio of 40 mmol l-1. The influx of H2O induced by the removal of NaCl from the ventricular solution was associated with an instantaneous influx of K+. The H2O influx had a ratio to the flux of K+ of 70 mmol l-1. 7. The efflux of H2O induced by mannitol was associated with an efflux of Cl- which was inhibited by furosemide. The ratio of the two fluxes was in the range 15-44 mmol l-1. 8. The conclusion is that the Ch+ method gives a reliable measure of the movement of H2O across the ventricular membrane. The magnitude of the Lp and its relevance to transepithelial transport are discussed. The osmotically induced H2O movement is accompanied by furosemide-sensitive fluxes of K+ and Cl- of the same magnitude. This suggests that co-transport between H2O and KCl can take place in the membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.