Abstract

The route of water transport in the proximal tubule could be either transjunctional or transcellular. A transjunctional route is supported by data showing high osmotic-to-diffusive water permeability ratios, the possible correlation of junctional leakiness to ions and nonelectrolytes with water permeability, and solvent drag of nonelectrolytes and ions. These data, however, are not convincing. A transcellular route of water transport is supported by data showing that the osmotic water permeability (Pf) for apical and/or basolateral cell membranes is sufficiently high to account for the transepithelial Pf, making a tentative conclusion for a transcellular route of water transport possible. In addition, measurements of Pf have yielded insights into the mechanism of solute-solvent coupling. Pf has been reported to be mostly between 0.1 and 0.3 cm/s. In the rabbit proximal straight and the Necturus proximal convoluted tubule, in which water transport rates are low, this range of Pf will account for volume absorption with only small osmotic gradients (less than 6 mosmol). Higher osmotic gradients are required in the rat and possibly the rabbit proximal convoluted tubule, where water transport rates are higher. Solute-solvent coupling in all species is probably due to both luminal hypotonicity and lateral intercellular space hypertonicity. These two processes are directly linked. Mass balance requires that generation of luminal hypotonicity also generates a hypertonic absorbate and, thus, some degree of lateral intercellular space hypertonicity. It is likely that, in the rabbit at least, effective osmotic pressure gradients due to differences in solute reflection coefficients play little role in solute-solvent coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.