Abstract

AbstractWater behavior in bentonite clay pores is influenced by soil–water interaction mechanisms such as capillary and adsorptive forces. Quantitative measurement of these water statuses remains challenging, leading to the adoption of advanced techniques. This study uses low‐field nuclear magnetic resonance (NMR) technique to investigate water partitioning dynamics and changes in the water state in sodium‐rich Wyoming bentonite and calcium‐rich Denver bentonite under various humidity conditions. NMR T2 relaxation and T1–T2 mapping techniques, along with a multi‐Gaussian decomposition method, enable a quantitative analysis of capillary and adsorptive water in both bentonites. A conceptual water partitioning model is derived to explain water molecule trajectories of water molecules under unsaturated conditions. Our findings indicate distinct transitions in hydrated layers for Na+‐smectite and Ca2+‐smectite at different relative humidity (RH) ranges. Characteristic T2 ranges are identified for capillary and adsorptive water in both clays and provide valuable insights into their water behavior. This study advances our understanding of soil properties at different RH environments and highlights the potential of low‐field NMR techniques in characterizing capillary and adsorptive water in bentonite clays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.