Abstract

Very high resolution Viking Orbiter images (8–17 m per pixel) have been used to investigate the morphology of Martian rampart crater ejecta blankets and the crater interiors, with the objective of identifying the fluidizing medium for the ejecta and the physical properties of the target rock. The occurrence of well-preserved, small-scale pressure ridges and scour marks, evidence for subsidence around isolated buried blocks in partially eroded ejecta lobes, and the stability of crater walls and distal ramparts argue for ground ice being the dominant state for volatiles within the target rocks at the time of impact. Rare examples of channels (190–650 m wide) on the surfaces of ejecta blankets, and on the inner walls of the crater Cerulli, indicate that in some instances liquid water was incorporated into the ejecta during its emplacement. No morphological evidence has been found to discount the idea that atmospheric effects were partially responsible for ejecta fluidization, but it is clear that these effects were not the sole reason for the characteristic lobate deposits surrounding at least some rampart craters on Mars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call