Abstract

Water is ubiquitous and so is its presence in the proximity of surfaces. To determine and control the properties of interfacial water molecules at nanoscale is essential for its successful applications in environmental and energy-related fields. It is very challenging to explore the atomic structure and electronic properties of water under various conditions, especially at the surfaces. Here we review recent progress and open challenges in describing physicochemical properties of water on surfaces for solar water splitting, water corrosion, and desalination using first-principles approaches, and highlight the key role of these methods in understanding the complex electronic and dynamic interplay between water and surfaces. We aim at showing the importance of unraveling fundamental mechanisms and providing physical insights into the behavior of water on surfaces, in order to pave the way to water-related material design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call