Abstract
We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg–Richter law. This power law describes the earthquake-magnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its along-strike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov–Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north–south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value ‘bull's-eyes’ along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the related seismicity. Our results suggest serpentinization around mid-ocean ridge transform faults, which go on to become fracture zones on the incoming plate, plays a significant role in the delivery of water into the mantle at subduction zones.
Highlights
The approach used in each figure, is indicated in B; for example, Figure 4A uses the SRC2008 catalog, the cells are circular on a grid search and the cell size is constant
The average b-values in areas which subducted fracture zones are calculated using all results in the grey shaded areas ("frac") with the remaining areas the white gaps ("nofrac")
In the right column the density of the results is shown with grey shading, the lines mark the average b-values and their uncertainties which were calculated in 10 km steps
Summary
The approach used in each figure, is indicated in B; for example, Figure 4A uses the SRC2008 catalog, the cells are circular on a grid search and the cell size is constant (referred to as Case 1 in the text). The disrupted appearance of the uncertainty map for the fixed cell size calculation (top right) is not a result of any unstable calculation method but rather of the low uncertainties of the bvalues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.