Abstract

The following type of nozzle problem is found in some introductory-level physics textbooks.1–3 The (average) flow speed of water through and out a hose with a cross-sectional area AH is vH. If a nozzle with an exit area AN < AH is attached to the hose, what is the speed vN of the water out of it? The books simply apply the continuity equation AHvH = ANvN to the nozzle to obtain vN = (AH/AN)vH. This solution is not correct because it does not take account of the fact that attaching the nozzle to the hose reduces the flow speed in it. So the books' values of vN must always be too high, sometimes by large amounts. It should not seem surprising that it takes more time to fill a watering can with a garden hose when there is a nozzle at the end of it than when there isn't. This paper will explain how a water nozzle actually works, and for a situation with a simple water source, the correct flow speed from a nozzle will be derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.