Abstract

AbstractThe hydraulic properties of the firn on Storglaciären, Sweden, were investigated in firn cores by water-table measurements and pumping tests. The mean density of the firn was 800 850 kg m3, giving an effective porosity of 0.073. The lower part of the firn layer was saturated with water, producing a maximum saturated layer of 5 m in late July. Hydraulic conductivity of the firn aquifer was determined from pumping tests to be 4.9 × 105 m s1. Percolation velocity, calculated from the time lag of maximal water input at the glacier surface and the water-level peaks, was 0.25 m h1. Percolation velocity increased over the ablation season, indicating a widening of the percolation pathways. A decrease in percolation velocity with percolation depth was found, reflecting decreasing permeability. The firn–water table responded to water input at the glacier surface with a delay of about 3 days. No diurnal variations were found in an area which was not influenced by fast drainage, indicating a diffusion of diurnal variations in meltwater production. One borehole intersected a water-filled cavity. Water level in this cavity showed diurnal variations, which probably were caused by diurnally produced meltwater waves moving fast through englacial conduits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.