Abstract
Natural samples of typical cyclosilicates beryl and cordierite include water and carbon dioxide molecules in channels formed by the open cavities. Water molecules in the channels have two forms that are distinguished by whether they coordinate to extra-framework cations (type II) or not (type I). We measured polarized infrared (IR) spectra for thin sections of the (100) plane of beryl or the (100) and (010) planes (cb and ca planes) of cordierite under various temperature conditions. The spectral features of major bands clearly showed the distinguishable behavior of types I and II water molecules under high temperature as follows. Over the temperature range from room temperature to 800°C where rapid dehydration did not occur, the decrease in band heights for type II water molecules were smaller than those for type I, and band shifts were more predominant for type II water molecules. The decrease in band heights and band shifts of type I/II bands differed also for beryl and cordierite, which arises from the different ways in which water molecules are fixed in the channels. Dehydration was enhanced at 850°C. The IR spectra at room temperature quenched from 850°C both for beryl and cordierite showed that the vibrational bands related to type II water molecules were stable after those related to type I water molecules disappeared. In addition, frequency changes of type II bands were observed, possibly because of changes of coordination states of type II water molecules to extra-framework cations in the channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.