Abstract
To develop and reliably use diagnostic and therapeutic methods employing microwaves, we need to have an accurate knowledge of biological dielectric properties. Traditionally, dielectric properties of biosamples are determined experimentally. However, such measurements require dedicated hardware and physical availability of sufficient volume of biological samples of interest. Instead, here, we demonstrate the prediction of complex permittivity of a simple biomolecular sample using computational molecular dynamics simulations. We focus here on the role of a molecular model of water since it is the major compound determining microwave dielectric properties of biological tissues and wet samples. Here, for the first time, we analyze how the common molecular water models (SPC/E, TIP3P, and TIP4P) affect complex permittivity of biomolecular solutions predicted by molecular dynamics simulations. We found that the type of the molecular water model used in the simulation affects not only water contribution but also biomolecule contribution to the permittivity spectra. Our results contribute to in silico prediction and understanding of dielectric properties of biomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.