Abstract
Up to now it has not been possible to neatly assess whether a deficient performance of a model is due to poor parametrization of the force field or the lack of inclusion of enough molecular properties. This work compares several molecular models in the framework of the same force field, which was designed to include many-body nonadditive effects: (a) a polarizable and flexible molecule with constraints that account for the quantal nature of the vibration [B. Hess, H. Saint-Martin, and H. J. C. Berendsen, J. Chem. Phys. 116, 9602 (2002), H. Saint-Martin, B. Hess, and H. J. C. Berendsen, J. Chem. Phys. 120, 11133 (2004)], (b) a polarizable and classically flexible molecule [H. Saint-Martin, J. Hernandez-Cobos, M. I. Bernal-Uruchurtu, I. Ortega-Blake, and H. J. C. Berendsen, J. Chem. Phys. 113, 10899 (2000)], (c) a polarizable and rigid molecule, and finally (d) a nonpolarizable and rigid molecule. The goal is to determine how significant the different molecular properties are. The results indicate that all factors--nonadditivity, polarizability, and intramolecular flexibility--are important. Still, approximations can be made in order to diminish the computational cost of the simulations with a small decrease in the accuracy of the predictions, provided that those approximations are counterbalanced by the proper inclusion of an effective molecular property, that is, an average molecular geometry or an average dipole. Hence instead of building an effective force field by parametrizing it in order to reproduce the properties of a specific phase, a building approach is proposed that is based on adequately restricting the molecular flexibility and/or polarizability of a model potential fitted to unimolecular properties, pair interactions, and many-body nonadditive contributions. In this manner, the same parental model can be used to simulate the same substance under a wide range of thermodynamic conditions. An additional advantage of this approach is that, as the force field improves by the quality of the molecular calculations, all levels of modeling can be improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.