Abstract

Using real-time mass spectrometric (MS) monitoring, we demonstrate one-step, catalyst-free spontaneous oxidation of various alcohols (ROH) to key reactive intermediates for the formation of ROO- compounds on the surface of water microdroplets surrounded by alcohol vapor, carried out under ambient conditions. These organic peroxides (POs) can act as important secondary organic aerosols (SOA). We used hydrogen-deuterium exchange by spraying D2O instead of H2O to learn about the reaction mechanism, and the results demonstrate the crucial role of the water-air interface in microdroplet chemistry. We find that the formation of POs relies on electron transfer occurring at the microdroplet interface, which generates hydrogen atoms and hydroxyl radicals that lead to a cascade of radical reactions. This electron transfer is believed to be driven by two factors: (1) the emergence of a strong electrostatic potential on the microdroplet's surface; and (2) the partial solvation of ions at the interface. Mass spectra reveal that the formation of POs is dependent on the alcohol structure, with tertiary alcohols showing a higher tendency to form organic peroxides than secondary alcohols, which in turn are more reactive than primary alcohols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.