Abstract

We examine energy dynamics in the unliganded and liganded states of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI), which exhibits cooperativity mediated by the cluster of water molecules at the interface upon ligand binding and dissociation. We construct and analyze a dynamic network in which nodes representing the residues, hemes, and water cluster are connected by edges that represent energy transport times, as well as a nonbonded network (NBN) indicating regions that respond rapidly to local strain within the protein via nonbonded interactions. One of the two largest NBNs includes the Lys30-Asp89 salt bridge critical for stabilizing the dimer. The other includes the hemes and surrounding residues, as well as, in the unliganded state, the cluster of water molecules between the globules. Energy transport in the protein appears to be controlled by the Lys30-Asp89 salt bridge critical for stabilizing the dimer, as well as the interface water cluster in the unliganded state. Possible connections between energy transport dynamics in response to local strain identified here and allosteric transitions in HbI are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.