Abstract

AbstractTo effectively tackle the intricate and dynamic challenges encountered in proton exchange membrane fuel cells (PEMFCs), this paper introduces a model-free reinforcement learning approach to address its water management issue. Recognizing the limitations of conventional reinforcement learning methods such as Q-learning in handling the continuous actions and nonlinearity inherent in PEMFCs water management, we propose a prioritized deep deterministic policy gradient (DDPG) method. This method, rooted in the Actor-Critic framework, leverages double neural networks and prioritized experience replay to enable adaptive water management and balance. Additionally, we establish a PEMFCs water management platform and implement the prioritized DDPG method using "Tianshou", a modularized Python library for deep reinforcement learning. Through experimentation, the effectiveness of our proposed method is verified. This study contributes to advancing the understanding and management of water dynamics in PEMFCs, offering a promising avenue for enhancing their performance and reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.