Abstract

AbstractIt has now been well recognized that both the performance and durability of proton exchange membrane fuel cells (PEMFCs) are closely related to the water accumulation and transport inside its porous components, particularly in the gas diffusion layer (GDL), and microporous layer (MPL). In this paper, the key GDL and MPL properties that affect water transport through them are first discussed and a review of GDL degradation mechanisms is presented. An intermittent water drainage mechanism across the GDL is discussed. The capillary breakthrough pressure (CBP) and the dynamic capillary pressure (DCP), or recurrent breakthrough dynamics, have been identified as key GDL properties that affect its water management performance and function as indicators of the degradation of GDL material. This work uses a novel ex situ experiment to degrade a GDL by exposing it to an accelerated stress test (AST) that subjects the GDL to elevated operation conditions seen at the cathode side of a PEMFC for an extended period of time. In turn, the effect of the AST on the CBP and DCP is investigated. As a result, a loss of hydrophobicity occurred on the MPL surface. This altered the CBP and DCP, thus decreasing water management in the GDL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call