Abstract

BackgroundPrecisely predicting the water levels of rivers is critical for planning and supporting flood hazard and risk assessments and maintaining navigation, irrigation, and water withdrawal for urban areas and industry. In Hungary, the water level of rivers has been recorded since the early nineteenth century, and various water level prediction methods were developed. The Discrete Linear Cascade Model (DLCM) has been used since 1980s. However, its performance is not always reliable under the current climate-driven hydrological changes. Therefore, we aimed to test machine learning algorithms to make 7-day ahead forecasts, choose the best-performing model, and compare it with the actual DLCM.ResultsAccording to the results, the Long Short-Term Memory (LSTM) model provided the best results in all time horizons, giving more precise predictions than the Baseline model, the Linear or Multilayer Perceptron Model. Despite underestimating water levels, the validation of the LSTM model revealed that 68.5‒76.1% of predictions fall within the required precision intervals. Predictions were relatively accurate for low (≤ 239 cm) and flood stages (≥ 650 cm), but became less reliable for medium stages (240–649 cm).ConclusionsThe LSTM model provided better results in all hydrological situations than the DLCM. Though, LSTM is not a novel concept, its encoder–decoder architecture is the best option for solving multi-horizon forecasting problems (or “Many-to-Many” problems), and it can be trained effectively on vast volumes of data. Thus, we recommend testing the LSTM model in similar hydrological conditions (e.g., lowland, medium-sized river with low slope and mobile channel) to get reliable water level forecasts under the rapidly changing climate and various human impacts.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call