Abstract

This study investigates the infiltration of water in ZSM-5 zeolite crystals via molecular dynamics simulations and experiments. A zeolite nano-crystal is constructed in the simulations and is surrounded by water molecules which enter and saturate the pores. The average number of water molecules per unit cell of the zeolite is determined along with the radial distribution function of water inside the zeolites. A geometric approximation of the zeolite pores and intersections is proposed and verified. Partial charge on the zeolite atoms is found to be a crucial parameter which governs the water infiltration behavior. ZSM-5 zeolite crystals were also synthesized and water infiltration experiments were conducted using an Instron. The simulation and experimental findings are compared and discussed. The understanding gained from these studies will be important for the development of zeolite based reverse osmosis membranes for water desalination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.