Abstract

A neutral, stable radical, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•), has been frequently used to estimate the activity of antioxidants for more than 60 years. However, the number of reports about the effect of metal ions on the reactivity of DPPH• is quite limited. We have recently reported a unique electron-transfer disproportionation of DPPH• to produce the DPPH cations (DPPH+) and anions (DPPH-) upon the addition of scandium triflate [Sc(OTf)3 (OTf = OSO2CF3)] to an acetonitrile (MeCN) solution of DPPH•. The driving force of this reaction is suggested to be an interaction between DPPH- and Sc3+. In this study, it is demonstrated that the addition of H2O to the DPPH•-Sc(OTf)3 system in MeCN resulted in an increase in the absorption band at 519 nm due to DPPH•. This indicated that an electron-transfer comproportionation occurred to regenerate DPPH•. The regeneration of DPPH• was also confirmed by electron paramagnetic resonance (EPR) spectroscopy. The amount of DPPH• increased with an increasing amount of added H2O to reach a constant value. The detailed mechanism of regeneration of DPPH• was proposed based on the detailed spectroscopic and kinetic analyses, in which the reaction of DPPH+ with [(DPPH)2Sc(H2O)3]+ generated upon the addition of H2O to [(DPPH)2Sc]+ is the rate-determining step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.