Abstract
The effect of water on the morphology of BaO/Al2O3-based NOx storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multispectroscopy study reveal that in the presence of water surface Ba-nitrates convert to bulk nitrates and water facilitates the formation of large Ba(NO3)2 particles. The conversion of surface to bulk Ba-nitrates is completely reversible (i.e., after the removal of water from the storage material a significant fraction of the bulk nitrates reconverts to surface nitrates). NO2 exposure of a H2O-containing (wet) BaO/Al2O3 sample results in the formation of nitrites and bulk nitrates exclusively (i.e., no surface nitrates form). After further exposure to NO2, the nitrites completely convert to bulk nitrates. The amount of NOx taken up by the storage material, however, is essentially unaffected by the presence of water regardless of whether the water was dosed prior to or after NO2 exposure. On the basis of the results of this study, we are now able to explain most of the observations reported in the literature on the effect of water on NOx uptake on similar storage materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.