Abstract

Uniform hard carbon spheres (HCS), synthesized by the hydrothermal decomposition of sucrose followed by pyrolysis, are effective at stabilizing water-in-trichloroethylene (TCE) emulsions. The irreversible adsorption of carbon particles at the TCE-water interface resulting in the formation of a monolayer around the water droplet in the emulsion phase is identified as the key reason for emulsion stability. Cryogenic scanning electron microscopy was used to image the assembly of carbon particles clearly at the TCE-water interface and the formation of bilayers in regions of droplet-droplet contact. The results of this study have potential implications to the subsurface injection of carbon submicrometer particles containing zero-valent iron nanoparticles to treat pools of chlorinated hydrocarbons that are sequestered in fractured bedrock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.