Abstract

Reversible metal electrodeposition (RME) is an emerging and promising method for designing dynamic windows with electrically controllable transmission, excellent color neutrality, and wide dynamic range. Despite its very negative deposition voltage, Zn is a viable option for metal-based dynamic windows due to its fast switching kinetics and reversibility. In this manuscript, we describe the construction of Zn RME dynamic windows using water-in-salt electrolytes (WISe). By systematically comparing different electrolytes, we study the effects of different WISe components on Zn RME spectroelectrochemistry. This insight allows us to design practical two-electrode 25 cm2 Zn dynamic windows, the first examples of RME devices with WISe. We also establish a link between the morphology of the Zn electrodeposits and the optical contrast of the transparent electrodes during switching. Taken together, these studies highlight a potential design strategy for the construction of RME dynamic windows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.