Abstract

The chemical structure, polymer mobility and mechanical properties are studied for a cross-linked amorphous poly(ether urethane) (PU) from glass transition to rubber elasticity for juvenile dry samples and for water-saturated states after exposure to humid air (r.h. = 29, 67, 95, 100%) at 60∘C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$60~^\\circ \\hbox {C}$$\\end{document} during 1 y of ageing. For saturated samples, network chain cleavage is the chemical ageing mechanism, but it is too weak and slow to affect on the physical properties significantly within 1 y. Water acts primarily in a physical manner. Within 1 d, H2O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbox {H}_{{2}}\\hbox {O}$$\\end{document} molecules replace part of the weak urethane H-bonds by H2O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbox {H}_{{2}}\\hbox {O}$$\\end{document}–urethane H-bonds and reduce all other physical interactions between network chains by solvating hydrophilic segments. Thus, the cooperative polymer mobility strongly amplifies: The gain of specific conformational entropy doubles across the caloric glass transition, which shifts by −17 K. A H2O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbox {H}_{{2}}\\hbox {O}$$\\end{document} concentration of only cH2O≈(0.4…0.5)cH2O,max\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbox {c}_{{\\mathrm{H}_2\\mathrm{O}}}~\\approx ~(0.4~\\ldots ~0.5)~\\hbox {c}_{\\mathrm{\\mathrm{H}_2\\mathrm{O},max}}$$\\end{document} suffices for the major part of these fast rearrangements. Some part of the water slowly forms (during 3–4 months) a finely dispersed water-rich mixed phase with the PU chains. Except the new phase, these molecular processes of physical ageing strongly affect the mechanical properties at damage-free deformation. For dry PU in the glass transition, the shear modulus, μrelaxed\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu _{\\mathrm{relaxed}}$$\\end{document}(T), after viscoelastic stress relaxation only depends on the deformation-induced entropy change—like in the rubber elastic state. Within one month, water drastically decreases the viscoelastic response, as expected for plasticisation. However, μrelaxed\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu _{\\mathrm{relaxed}}$$\\end{document}(T) slightly grows in wet PU. H2O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbox {H}_{{2}}\\hbox {O}$$\\end{document} molecules cause these opposite trends by boosting the cooperative mobility (i.e. extension of the accessible conformational space and entropy by reduction in energy barriers) and by occupation of free volume compartments. Water quickly reduces the fracture parameters by about 50%. We explain that embrittlement by the H2O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbox {H}_{{2}}\\hbox {O}$$\\end{document}-induced facilitation of cooperative network chain motions, which let fracture proceed with less energy. In summary, our findings provide a detailed conception of the molecular effects the H2O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbox {H}_{2}\\hbox {O}$$\\end{document} molecules have on the PU network, and they explain the consequences for the mechanical properties.

Highlights

  • IntroductionWater is present in numerous applications of polymer materials

  • The applied mild hygro-thermal ageing is close to an upper limit of application conditions, and it assures the absence of unrealistic high-temperature processes

  • In saturated PU9010, water causes a bunch of effects, being strongest for the maximum water content obtained in contact with air of 100% relative humidity

Read more

Summary

Introduction

Water is present in numerous applications of polymer materials. It is one of the factors contributing to the ageing of polymers, and it causes significant changes of the mechanical properties. For the large group of the technologically most important polyurethane (PU) materials, knowledge on the ageing mechanisms on a molecular level, on the impact of water, and on their effect on macroscopic material properties is still incomplete Cross-linked PUs are much less studied than thermoplastic PUs. In conclusion, the state of the art on ageing of PU materials is coined by an incomplete understanding of the basic mechanisms and their implication on structure and physical properties (cf the recent reviews [29,30]) The state of the art on ageing of PU materials is coined by an incomplete understanding of the basic mechanisms and their implication on structure and physical properties (cf. the recent reviews [29,30])

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call