Abstract

In this study, the combined effect of waterborne Zn and water hardness on the stress response in the goldfish Carassius auratus was investigated. Goldfish were exposed to Zn concentrations of 0.5, 1.0, and 3.0 mg/L and water hardness of 90, 270, and 450 mg/L CaCO3 for 1, 3, 7, and 14 d. After exposure, it was determined that higher the Zn concentration, the more obvious the stress response. However, the stress response reduced with increasing water hardness. An increase in the Zn concentration caused stress responses in fish according to the increase in the mRNA expressions of corticotropin-releasing hormone and adrenocorticotropic hormone and cortisol level in the hypothalamus–pituitary–interrenal axis. The expression of these factors was the highest on day 7 and decreased on day 14. Furthermore, to evaluate the stress change in the liver tissue, we analyzed alanine aminotransferase, aspartate aminotransferase, and heat shock protein 70 concentrations to determine the damage caused by Zn and the change in water hardness. Immunohistochemistry staining for Na+/K+-ATPase in the gills showed that the gill activity was inhibited by Zn, and an increase in water hardness could improve Na+/K+-ATPase. In conclusion, we found that increasing water hardness is a successful method to reduce the stress response in goldfish caused by Zn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call